Linear Model Selection when Covariates Contain Errors.

نویسندگان

  • Xinyu Zhang
  • Haiying Wang
  • Yanyuan Ma
  • Raymond J Carroll
چکیده

Prediction precision is arguably the most relevant criterion of a model in practice and is often a sought after property. A common difficulty with covariates measured with errors is the impossibility of performing prediction evaluation on the data even if a model is completely given without any unknown parameters. We bypass this inherent difficulty by using special properties on moment relations in linear regression models with measurement errors. The end product is a model selection procedure that achieves the same optimality properties that are achieved in classical linear regression models without covariate measurement error. Asymptotically, the procedure selects the model with the minimum prediction error in general, and selects the smallest correct model if the regression relation is indeed linear. Our model selection procedure is useful in prediction when future covariates without measurement error become available, e.g., due to improved technology or better management and design of data collection procedures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model selection strategies for identifying most relevant covariates in homoscedastic linear models

We propose a new method in two variations for the identification of most relevant covariates in linear models with homoscedastic errors. In contrast to AIC, BIC and other information criteria, our method is based on an interpretable scaled quantity. This quantity measures a maximal relative error one makes by selecting covariates from a given set of all available covariates. The proposed model ...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

Partial linear single index models with distortion measurement errors

We study partial linear single index models when the response and the covariates in the parametric part are measured with errors and distorted by unknown functions of commonly observable confounding variables, and propose a semiparametric covariate-adjusted estimation procedure. We apply the minimum average variance estimation method to estimate the parameters of interest. This is different fro...

متن کامل

A Consistent Variable Selection Criterion for Linear Models with High-dimensional Covariates

We consider the variable selection problem in regression models when the number of covariates is allowed to increase with the sample size. An approach of Zheng and Loh (1995) for the fixed design situation is extended to the case of random covariates. This yields a unified consistent selection criterion for both random and fixed covariates. By using t-statistics to order the covariates, the met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 112 520  شماره 

صفحات  -

تاریخ انتشار 2017